Question		ion	Expected Answers	Marks	Additional Guidance		
1	(a)	(i)	It has maximum / large / increased stress at this point	B1	Allow: it has 'same force but thinner/smaller area'		
		(ii)	The tape has (permanent) extension / deformation when the force / stress is removed (AW)	B1	Note: Need reference to force or stress removed Allow: ' does not return to original size / shape / length when force / stress is removed'		
	(b)		 Measurement: Diameter Any two from: original / initial length (Not: final length) extension / initial and final lengths weight / mass 	B1 B1 X 2	The term <i>diameter</i> to be included and spelled correctly to gain the mark		
			 Equipment: Micrometer / vernier (calliper) (for the diameter of the wire) Any two from: Ruler / (metre) rule / tape measure (for measuring the original length / extension) Travelling microscope (for measuring extension) Scales / balance (for measuring the mass & mg 	B1 B1 × 2	The term <i>micrometer / vernier</i> (<i>calliper</i>) to be included and spelled correctly to the gain mark. (ALLOW: Micrometer is used to measure area / radius / thickness – as BOD)		
			equation is used or for measuring weight) / Newtonmeter (for the weight of hanging masses) / 'known' weights used		Allow: 'known masses & <i>mg</i> equation' but not 'known masses'		
			 Determining Young modulus: stress = force/(cross-sectional) area and strain = extension/original length 	B1	Allow: stress = F/A and strain = x/L		
			 Young modulus – stress/strain / Young modulus 	B1	Special case for determining Young modulus:		
			is equal to the gradient from stress-strain graph (in the linear region)		Gradient from force-extension graph is $\frac{EA}{L}$ B1		
					Young modulus = gradient × L/A B1		
			Total	10			

Question		tion	Expected Answers	Marks	Additional Guidance	
2	(a)		elastic potential (energy) / strain (energy)	B1	Note: The candidates do not need to include 'energy' since it is in the stem of the question Not: 'stored energy' / 'elastic energy'	
	(b)	(i)	strain = $\frac{0.35 \times 10^{-3}}{1.2}$ = 2.9(2)×10 ⁻⁴	B1		
		(ii)	stress = $1.9 \times 10^{11} \times 2.92 \times 10^{-4}$ (= 5.55×10^7 Pa) tension = $5.55 \times 10^7 \times 1.4 \times 10^{-7}$	C1	Possible ecf from b(i)	
			tension = 7.8 (N)	A1	Allow: Bald answer scores 2 marks	
	(c)	(i) 1	10 ⁻⁹ (m)	B1		
		(i) 2	Material does not return to original length / shape/ size when the force / stress is removed	B1	There must be reference to stress / force removed to score this mark Note : If there is no reference to unloading then allow 'material is <u>permanently</u> deformed'	
		(ii)	50 times (stronger)	B1		
		(iii)	Less mass / less weight / lighter Stronger / greater tensile strength	B1 B1		
			Total	9		

Q	Question		Answers	Marks	Guidance
3	(a)	(i)	The material is brittle.	B1	The term <i>brittle</i> to be included and spelled correctly to gain the first B1 mark.
			The material is also elastic.	B1	Allow 'does not show plastic (deformation)'
		(ii)	Straight line through origin followed by correct curve to show plastic behaviour.	B1	Note: Tolerance for the origin is shown below
			Straight line has greater gradient than X .	B1	0
	(b)	(i)	strain = $\frac{1.8 \times 10^7}{2.0 \times 10^{11}}$ (Any subject)	C1	The mark is for the correct use of strain = stress \div E
			strain = 9.0 × 10 ⁻⁵	A1	Allow 1 sf answer Ignore any unit given
		(ii)	$1.8 \times 10^7 = \frac{T}{\pi \times (2.6 \times 10^{-2})^2}$ (Any subject)	C1	The mark is for the correct use of stress = $\frac{F}{A}$
			tension = 3.8×10^4 (N)	A1	
		(iii)	$2T\sin 12 = W$	C1	
			weight = $2 \times 3.8 \times 10^4 \times sin12$ (Any subject)	C1	Possible ecf from (ii)
			weight = 1.6 × 10 ⁴ (N)	A1	Allow 2 marks for 7.9×10^3 (N); factor of 2 omitted Special case: Using cos12 instead of sin12 gives 7.4×10^4 (N), allow maximum of 2 marks Allow full credit for correct calculation using the sine or the cosine rule Allow full credit for an answer using a correct scale drawing: Correct sketch of vector diagram C1; correct vector diagram drawn to scale C1; weight = $(1.6 \pm 0.2) \times 10^4$ (N) A1
			Total	11	

G	Question		Answer	Marks	Guidance
4	(a)		force/extension or force per (unit) extension	B1	Allow: force/compression Not: $F = kx$ and the labels are defined, because k is not the subject
	(b)	(i)	Arrow showing the force exerted by A is to the <u>left</u> on Fig.3.1	B1	Allow an unlabelled arrow
		(ii)	1 (F_A =) 14 × 0.30 (= 4.2 N) or (F_B =) 14 × 0.50 (= 7.0 N) or (net force =) 2.8 (N)	C1	Allow: (net force =) $14 \times [0.50 - 0.30] = 2.8$ (N) Allow: acceleration of either 5.25 (m s ⁻²) or 8.75 (m s ⁻²)
			<i>a</i> = 2.8/0.80	C1	Allow this C1 mark for $a = 8.75 - 5.25$
			acceleration = $3.5 \text{ (m s}^{-2})$	A1	Note: $a = \frac{7.0 + 4.2}{0.80} = 14 \text{ (m s}^{-2}\text{) scores 1 mark}$
					Note : $a = \frac{14 \times 0.80}{0.80} = 14 \text{ (m s}^{-2}\text{) scores zero}$
			2 $E = \frac{1}{2} Fx$ or $E = \frac{1}{2} kx^2$ or 1.75 (J) or 0.63 (J)	C1	Note : Using $E = Fx$ scores zero because of wrong physics
			ratio = $\left(\frac{0.50}{0.30}\right)^2 = 2.8$	A1	Note: Answer to 3 sf is 2.78 Allow fractions (Ignore any units given for the ratio)
		(iii)	The resultant force (on the trolley) is smaller (AW)	B1	
		(iv)	The acceleration decreases Correct reasoning, eg: For the same (net force) <i>F</i> , $a = F/m$ (therefore <i>a</i> is smaller) For the same (net force) <i>F</i> , $a \propto 1/m$ (therefore <i>a</i> is smaller)	M1 A1	Allow : $F = ma$. As <i>m</i> increases then <i>a</i> must decrease because <i>F</i> is constant
			Total	10	

Question		on	Answer	Marks	Guidance
5	(a)	(i)	Young modulus = gradient (in the linear region)	C1	Allow: (E =) stress/strain for this C1 mark
			$E = 1.5 \times 10^9 / 0.008$	C1	
			$E = 1.9 \times 10^{11}$ (Pa)	A1	Note : Deduct 1 mark for incorrect value or omission of the prefix G. Also deduct another mark for incorrect conversion of 0.80% strain.
		(ii)	1 Obeys Hooke's law/elastic (behaviour) (AW)	B1	Allow: stress ∞ strain
		(ii)	2 Plastic (deformation) (AW)	B1	
		(iii)	No change (to the linear section)/gradient is the same	M1	
			because the Young modulus is the same (and independent of length)	A1	
	(b)		Polymer or polymeric or rubber	B1	<i>polymer/polymeric/rubber</i> must be spelled correctly to gain the first B1 mark Not: 'Monomer'
			Any one from:		
			 The material is elastic/there is no strain when the stress is removed/material returns to its original size or shape when forces are removed (AW) The work done on the material > energy returned back by the material or area under loading graph > area under unloading graph (AW) 	B1	Allow: material/graph shows 'hysteresis'
			The aeroplane/tyres do not bounce (too much on landing)	B1	Allow: Material 'absorbs' energy/material gets hot (AW)
			Total	10	